B 3 l
ARMY RESEARCH LABORATORY ‘ | R

A One-Dimensional, Noniterative Trajectory Model
(With a C++ Implementation)

by Robert J. Yager and Benjamin J. Flanders

ARL-TN-598 March 2014

Approved for public release; distribution is unlimited.

NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TN-598 March 2014

A One-Dimensional, Noniterative Trajectory Model
(With a C++ Implementation)

Robert J. Yager and Benjamin J. Flanders
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.
]

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
March 2014 Final July 2012—June 2013
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A One-Dimensional, Noniterative Trajectory Model (With a C++ Implementation)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Robert J. Yager and Benjamin J. Flanders AH80

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

U.S. Army Research Laboratory REPORT NUMBER

ATTN: RDRL-WML-A ARL-TN-598

Aberdeen Proving Ground, MD 21005-5066

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report defines algorithms that can be used to calculate speed, distance, and time variables as functions of initial and/or
final projectile states. Examples include speed as a function of initial speed and distance traveled, distance traveled as a
function of initial and final speeds, and time of flight as a function of initial and final speeds. Derivations for the algorithms are
based exclusively on force due to air resistance and allow for drag coefficients that have a functional relationship to Mach
number.

15. SUBJECT TERMS
fragment, trajectory, C++, gravity, analytic, noniterative, time of flight, Mach

17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF: OF ABSTRACT OF PAGES Robert J. Yager
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
Unclassified Unclassified Unclassified uu 30 410-278-6689

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Contents

List of Figures Y
List of Tables Y
Acknowledgments vi
1. Introduction 1
2. Scaled Variables 1
3. Derivation of Equations for Linear Drag Coefficients 2
3.1 Drag Coefficient as a Function of Mach NUmMbDer...........ccccoviiieii i 2
3.2 Scaled Distance as a Function of Mach NUMDETcccoviiiiiiniinieieee e 3
3.3 Mach Number as a Function of Scaled DiStanceccccvvveeiiveieiieniieeie e 4
3.4 Scaled Time as a Function of Mach NUMDETcccooiiiiiiiiiiicee e 5
4. Generalization to an Arbitrary Drag-Mach Relationship 6
4.1 Drag Coefficient as a Piecewise, Linear Function of Mach Number..........c.cccccevvienee. 6
4.2 Scaled Distance as a Function of Mach NUMDbEr ... 7
4.3 Mach Number as a Function of Scaled DiStancCeccceveririieneniin e 8
4.4 Scaled Time as a Function of Mach NUMDETcccooiiiieie i 9
5. State Variables and Functional Notation 10
TN I - (Y £ T4 - o] 1SR 10
5.2 FUNCHIONA NOTAIONc.viiiiiieiiee e 10
6. Solving for Unknowns 11
7. Example: The Lapua Scenar GB528 Rifle Bullet 12
7.1 Creating a Table of Unitless CONSLANTSccocvveerieieiieiiee e 12
7.2 Calculating Speed as a Function of Initial Speed and Distance Traveled..................... 13
7.3 Calculating Time of Flight as a Function of Initial Speed and Distance Traveled 14

8. C++ Implementation

8.1 Storing Drag-Table Coefficients: The DRAG StruCt..........ccoccvvveevveiieiinseeie e e
8.2 Creating a Pointer to an Array of DRAG Structs: The Drags() Function

8.3 Calculating Scaled Distance as a Function of Mach Number: The SofM() Function...

8.4 Calculating Mach Number as a Function of Scaled Distance: The MofS() Function...

8.5 Calculating Scaled Time: The TofM() Function

8.6 Example: Calculating Speed and Time of Flight for the Lapua Scenar GB528 Rifle
2 T) SRS

8.7 Example: Calculating Scaled Time of Impact for Fragment Trajectories.....................

9. Code Summary

Distribution List

18
19

20

22

List of Figures

Figure 1. Drag coefficient, Cp, as a function of Mach number, M.ccccoiiiiiiii i 2
Figure 2. Scaled distance, s, as a function of Mach number, M.c..cccov i 4
Figure 3. Mach number, M, as a function of scaled diStance, S..........ccccccevvrienieerii e 4
Figure 4. Scaled time, 7, as a function of Mach number, M..........ccccccoiieiiiieiccie e 6
Figure 5. Drag coefficient, Cp, as a piecewise function of Mach number, M.ccccooveniiiennns 7
Figure 6. Scaled distance, s, as a piecewise function of Mach number, M...........cccoociieniniiiinnnns 8
Figure 7. Mach number, M, as a piecewise function of scaled distance, S.cccccooevierienieiiennnns 9
Figure 8. Scaled time, 7, as a piecewise function of Mach number, M............ccccceiviiiiiiinennne, 10
Figure 9. Scaled time of impact, =, for fragments striking a plate.ccccoeeveveiieiiv i, 20
List of Tables

Table 1. Unitless parameters for a Lapua Scenar GB528 rifle bullet. ..o 12

Acknowledgments

The authors would like to thank Dr. Paul Weinacht of the U.S. Army Research Laboratory’s
Weapons and Materials Research Directorate. Dr. Weinacht provided technical and editorial
recommendations that improved the quality of this report.

Vi

1. Introduction

This report defines algorithms that can be used to calculate speed, distance, and time variables as
functions of initial and/or final projectile states. Examples include speed as a function of initial
speed and distance traveled, distance traveled as a function of initial and final speeds, and time of
flight as a function of initial and final speeds. Derivations for the algorithms are based
exclusively on force due to air resistance and allow for drag coefficients that have a functional
relationship to Mach number.

All algorithms are written in terms of scaled variables (speed, distance, and time) that are
independent of units. This approach allows for the precalculation of a set of parameters that
depend only on the characteristics of a particular drag versus Mach curve (i.e., the parameters are
independent of projectile mass, projectile cross-sectional area, and air density). A practical
benefit of this approach is a reduction in computation time.

The algorithms presented in this report are particularly useful for situations where total distance
traveled is approximately equal to the distance between starting and ending locations. Examples
include flat-fire trajectories and fragment trajectories.

JTCG/ME-79-1-2* presents a method for calculating speed as a function of initial speed and total
distance traveled. It relies upon an analytic solution that is similar to what is presented in
sections 3.1 and 3.2 of this report. The key difference is that the method presented in this report
provides a solution to the equations of motion in terms of variables that are independent of units.

2. Scaled Variables

Recall that Mach number, M, is defined to be the ratio of the speed, v, of an object moving
through a fluid to the local speed of sound, vs. That is,

M (1)

Vv
Vs

Scaled distance, s, is defined as a function of measured distance, x:

L30int Technical Coordinating Group for Munitions Effectiveness. Computer Program for General Full Spray Materiel MAE
Computations, Volume 11 — Analyst Manual; AMSAA 61 JTCG/ME-79-1-2; U.S. Army Materiel Systems Analysis Activity:
Aberdeen, MD, 1987.

PA X 2

2m

S

where p is the density of the air through which a projectile travels, A is the projectile’s cross-
sectional area, and m is its mass.

Scaled time, ¢, is defined as a function of measured time, t:

A

3. Derivation of Equations for Linear Drag Coefficients

Begin with the equation for the force acting on a projectile that is due to air resistance:
1 2
F = —ECDpAV (4)
where Cp is a projectile’s drag coefficient, and p, A, and v are as defined in section 2.

3.1 Drag Coefficient as a Function of Mach Number

Assume that Cp, is linearly dependent on Mach number (figure 1). Then

Co=aM +f3 (5)
where ¢ and g are constants representing slope and intercept, respectively.
CD
Cpo=aM + B, where « and S are free parameters.
¢ M

Figure 1. Drag coefficient, Cp, as a function of Mach number, M.

3.2 Scaled Distance as a Function of Mach Number

Using Newton’s second law, equation 4 can be used to solve for acceleration:
F=ma

1
—a=——=C_,pAv?
om D P

(6)
7)

Next, the definitions of speed and acceleration can be used to find acceleration as a function of

speed and position:

dv _dv o
dt dx dt

=a=V—
X

Combining equations 7 and 10,

dv 1
N2 c. pAv
dx 2m ~°F

Next, equations 1 and 2 can be used to rewrite equation 11 in terms of scaled variables:

M

—=-C. M
ds °

Substituting equation 5 into equation 12,

d—M =—(aM +)M
ds

Equation 13 can be solved for s by using the method of separation of variables:

S S S
(aM + /)M

The solution to the integral in equation 14 can be found in integral tables:?

s:iln(a+ﬁj+c
yij M

where c is a constant of the integration and is determined by initial values for s and M.

2Lide, D. R. Handbook of Chemistry and Physics, 89th ed.; CRC Press: London, 2008; p A-16, equation 37.

(8)

©)

(10)

(11)

(12)

(13)

(14)

(15)

C=S5, —lln[a+£j
Vi M

0

Note that equations 15 and 16 are only valid for ¢+ /M >0, M #0, and g #0. Since, by

(16)

definition, Mach numbers are non-negative, the conditions «+ /M >0 and M =0 are assured

if we assume that C, > 0O for all values of M and M, >0. The case where g =0 will occur
occasionally. To be exact, equation 14 should be solved for the special case where 2=0. In
practice, however, when encountering a situation where g =0, it is sufficient to change g to

some very small value.

Figure 2 presents scaled distance, s, as a function of Mach number,

M.

S 1
s:—ln(a+£j+c, wherec:so—lln
B M B

(M, >0and g #0).

B

0

a+-—|
M J

and «, f, s,,and M, are free parameters

Figure 2. Scaled distance, s, as a function of Mach number, M.

3.3 Mach Number as a Function of Scaled Distance

Solving equation 15 for M yields Mach number as a function of scaled distance (figure 3):

(17)

_ p
Moo o
M
M _%' Wherec=so_i|n a+£ ,
M, e —a 5 M-

and a, 3, s,, and M, are free parameters
(M, >0and g =0).

¢ S, —

Figure 3. Mach number, M, as a function of scaled distance, s.

3.4 Scaled Time as a Function of Mach Number
Begin by using equations 1 and 7 to find acceleration as a function of Mach number:
a:—iCDpAvfM 2 (18)
2m
Next, use equations 1 and 9 to relate acceleration to the time derivative of Mach number:

dM
a=Vv,— 19
s at (19)

Combining equations 18 and 19,

dMm 1
T=_%CDPAVSM 2 (20)

Equation 3 can be used to rewrite equation 20 in terms of scaled time:
dM

W = —CDM 2 (21)
Substituting equation 5 into equation 21,
‘jj—'\: — (oM + B)M? 22)

Equation 22 can be solved for by using the method of separation of variables:

1
TZ—deM (23)

The solution to the integral in equation 23 can be found in integral tables:3

f:i—%ln(mﬁ}d (24)
M B M
where d is a constant of the integration and is determined by initial values for 7 and M .
d=r,—— +%|n[a+£] (25)
My B M,

As was the case with equations 15 and 16, equations 24 and 25 are only valid for o+ /M >0,
M =0, and g =0. Since, by definition, Mach numbers are non-negative, the conditions
a+pIM >0 and M =0 are assured if we assume that C, > 0 for all values of M and M, > 0.

3Lide, D. R. Handbook of Chemistry and Physics, 89th ed.; CRC Press: London, 2008; pp A-17, equation 40.

The case where s =0 will occur occasionally. To be exact, equation 23 should be solved for the
special case where g =0. In practice, however, when encountering a situation where =0, itis
sufficient to change g to some very small value.

Figure 4 presents scaled time, z, as a function of Mach number, M.

2

T
Tzi—iln[a+£j+d, whered =17, — +%In(a+£}
M o B M,

M B
and «, S, 7, and M, are free parameters
(M, >0and g #0).

Figure 4. Scaled time, 7, as a function of Mach number, M.

4. Generalization to an Arbitrary Drag-Mach Relationship

The equations in section 3 can be generalized for a piecewise, linear function of drag given
Mach. This technique allows for any functional relationship between drag coefficient and Mach
number to be modeled.

4.1 Drag Coefficient as a Piecewise, Linear Function of Mach Number

Suppose that drag coefficient as a function of Mach number is defined by n matched pairs of
values for Mach number and drag coefficient, (M,,C,), such that

M., <M, for 0<k<n-1 (26)

Using the matched pairs, n—1 equations that have the form of equation 5 can be generated:
Co, =M+, (27)
for ksuchthatM,, <M <M, and 0<k <n-1.

Figure 5 presents drag coefficient, Cp, as a piecewise function of Mach number, M.

Co Cp =M + g forksuchthat M,,, <M <M,
A a. = CD,k _CD,k+1
whered M, -M,,
B =Coy —a M,
C.= 2Fdrag &M = v
P PAV? A
¢ : :
My oy M. M, M,

Figure 5. Drag coefficient, Cp, as a piecewise function of Mach number, M.
Equation 27 can be used to determine the values of «, and g, :

_ CD,k _CD,k+l
o =—————

Mk - Mk+1
and

By :CD,k -a,M,

4.2 Scaled Distance as a Function of Mach Number
Equation 15 can be generalized to a piecewise function of Mach number:

s=iln(ock +&j+ck
Y] M

k

for kK suchthat M, , <M <M, .

Values for ¢, can be found by generalizing equation 16:

Cy =Sox —ﬂiln(ozk + ka J
k 0,k

(28)

(29)

(30)

(31)

Values for initial conditions for each segment of the function are given by equations 32 and 33:

Mo, =M,
and
Sox = Sk

Values for s, can be obtained from equation 30:

(32)

(33)

Sy =

In(ak1+’fﬂk]+ckl (34)

k-1
Since the value of s,_, is arbitrary, zero is used as a convenient choice:
Sy =0 (35)

Figure 6 presents an overview of the functions necessary to calculate scaled distance as a
function of Mach number. Note that for a particular drag coefficient versus Mach table, «, , S, .

c,, and s, are unique (independent of particle mass, air density, etc.). Thus, they can be
precalculated and stored in tabulated form.

S
S= In(ak+'f/lk)+ck forksuchthatM,,, <M <M,

k

C Cous
ay _I\Ijlkil\/liill B =Cox—a M,

C, =sk—ln(ak Py J
By M,

1 In(ozkl f;‘ljﬂzk &S, =0

S, =
k-1 k

e M

MkO

Figure 6. Scaled distance, s, as a piecewise function of Mach number, M.

4.3 Mach Number as a Function of Scaled Distance

Equation 17 can be generalized to a piecewise function of scaled distance:

w__ DB

eﬂk (s—¢) _ a,

(36)

for k suchthat s, <s<s,,.

Figure 7 presents an overview of the functions necessary to calculate Mach as a function of
scaled distance. Note that for a particular drag coefficient versus Mach table, «, , g, c,,and

s, are unique (independent of particle mass, air density, etc.). Thus, they can be precalculated
and stored in tabulated form.

M M_ ﬁk

=— o, forksuchthats <s<s,,
e -,

CD,k _CD,k+l
M k M Kk+1

a, =

By :CD,k -y M,,

S0 = 0 Sy S Sk=na

Figure 7. Mach number, M, as a piecewise function of scaled distance, s.

4.4 Scaled Time as a Function of Mach Number

Equation 24 can be generalized to a piecewise function of Mach number:

1 o
Tzﬂkl\/l __Eln(ak+%j+dk (37)

for k suchthat M, , <M <M,.

Values for d, can be found by generalizing equation 25:

d =7y —— +a—k2|n(ak+ ﬂkj (38)
ﬁkMO,k IBk MO,k

Values for initial conditions for each segment of the function are given by equations 32 and 39:

Tox = Tk (39)

Values for z, can be obtained from equation 37:

T, = L a"z’l In(ock_1 + &J +d,, (40)
ﬂk—l'\/I k ﬂk—l M

Since the value of 7, _; is arbitrary, zero is used as a convenient choice:

Tyo =0 (41)

Figure 8 presents an overview of the functions necessary to calculate scaled time as a function of
Mach number. Note that given the choice of z,_, =0, for a particular drag versus Mach table,
a,, P, d.,and z, are unique. Thus, they can be precalculated and stored in tabulated form.

T
rzi—a—kzln[ak+&]+dkf0rksuchthatMmsM <M,
BM f M
a :CD,k_CD,k+1 B.=Cg, — M
k Mk _Mk+1 ' k D,k k™ ke
d, =7 — L +a—kzln ak+ﬂ)
where BM, B M,
7, = 1 —akz‘lln(akl+ﬂk‘lj+d“,&
ﬂk—le ﬂk—l Mk
- Tk:O =0
¢ : . v M
Mk:nfl Mk+1 Mk Mk:o

Figure 8. Scaled time, 7, as a piecewise function of Mach number, M.

5. State Variables and Functional Notation

For a given set of atmospheric and projectile characteristics, knowledge of any one of the three
scaled variables defined in section 2 (i.e., M, s, or ¢) is sufficient to uniquely define the state of
a projectile. Applications of the equations presented in section 4 typically involve solving for
some unknown state variable given one or two known state variables. The following six
equations can make solving for unknowns easier.

5.1 State Variables

Since M, s, and = can each be used to characterize the state of a projectile, the following three
definitions can be used to quantify a change in a state variable.

AM = M g — My (42)
AS = Sgina = Sinitial (43)
AT = T = Tinigial (44)
5.2 Functional Notation
Using equation 30, define s(M) to be scaled distance as a function of Mach number:
s(M) =iln(ak +ﬂj+ck (45)
B M

Using equation 36, define M(s) to be Mach number as a function of scaled distance:

10

M(s) = Do (46)

eﬂk (s—¢) _ ak

Using equation 37, define (M) to be scaled time as a function of Mach number:

_ L1 e P
T(M)—ﬂkM ,Bkzln(akJererk (47)

6. Solving for Unknowns

When attempting to solve for some unknown state variable, it helps to break the problem into
four sections:

* ldentify known and unknown values for unscaled state variables.

» Convert known values for state variables to scaled state variables using the equations
presented in section 2.

» Use the equations presented in section 5 to develop an equation that is solved for the
unknown scaled state variable in terms of known scaled state variables.

» Use the equations presented in section 2 to convert the unknown scaled state variable to an
unscaled value.
For example, suppose that initial speed, v, .., , and distance traveled, Ax, are known, and it is
wished to determine final speed, v, . The first step is to use equations 1 and 2 to convert v, .,

and Axto the scaled variables M and As. Next, represent the problem in functional

initial
notation:

M finat = M (Sfinar) (48)
where M (s,) IS given by equation 46.

Solve equation 42 for the final scaled speed and substitute into equation 46:

M = M (AS + Sipiar) (49)

final

Next, note that s, ... can be calculated using equation 45. Thus,

initial

M et = M (AS +S(M 1)) (50)

final
Finally, use equation 1 to find v, given M. ... A wide variety of problems can be solved in

this manner.

11

7. Example: The Lapua Scenar GB528 Rifle Bullet

7.1 Creating a Table of Unitless Constants

Wikipedia’s External Ballistics page* lists drag coefficient versus Mach number values for the

Lapua Scenar GB528 rifle bullet. Using those values, equations from section 4 can be used to
calculate the parameters listed in table 1. Specifically, given M, and C,, for 0<k <28, the

equations summarized in figures 7 and 8 have been used to calculate «, , 3, , s,, ¢, 7, ,and

d,.

Table 1. Unitless parameters for a Lapua Scenar GB528 rifle bullet.

k M Cpo a B S c T d

0 2.4 0.27 -0.06 0.414 0 5.2773 0 -0.241615
1 2.2 0.282 -0.05 0.392 0.315209 | 5.555784 | 0.137177 | -0.353937
2 2 0.292 -0.06 0.412 0.647242 | 5.317506 | 0.295484 | -0.237973
3 1.8 0.304 -0.085 0.457 1.000723 | 4.89244 | 0.481805 | -0.01001
4 1.6 0.321 -0.07 0.433 1.377521 | 5.087262 | 0.703845 | -0.139846
5 15 0.328 -0.08 0.448 1576392 [4.96971 [0.832223 | -0.049923
6 14 0.336 -0.07 0.434 1.784183 [5.072469 [0.975621 | -0.13983
7 13 0.343 -0.05 0.408 2.002448 | 5.268108 | 1.137427 | -0.347739
8 1.2 0.348 0 0.348 2.234102 | 5.791212 | 1.32293 | -1.071706
9 1.15 0.348 0.02 0.325 2.3564 6.034291 | 1.427044 | -1.474873
10 11 0.347 0.08 0.259 2.48432 | 6.938917 | 1.54079 [-3.345151
11 1.075 0.345 0.16 0.173 2.550765 | 9.120311 | 1.601894 | -9.851053
12 1.05 0.341 0.28 0.047 2.619369 | 26.548368 | 1.666471 |-161.15269
13 1.025 0.334 1.12 -0.814 2.690775 | 1.313248 | 1.735305 | 1.038474
14 1 0.306 2.8 -2.494 2.768002 | 2.293195 | 1.811601 | 1.679499
15 0.975 0.236 2.36 -2.065 2.862002 | 2.175026 | 1.906853 | 1.618416
16 0.95 0.177 0.92 -0.697 2.988737 | 0.577959 | 2.038621 | 0.366765
17 0.925 0.154 0.48 -0.29 3.150184 | -3.032027 | 2.210906 | -4.293853
18 0.9 0.142 0.2 -0.038 3.335448 | -45.258439| 2.413998 |-224.10354
19 0.875 0.137 0 0.137 3.537428 | 17.072049 | 2.641631 | -5.700392
20 0.85 0.137 -0.16 0.273 3.749016 | 10.434934 | 2.886984 | 2.496055
21 0.825 0.141 -0.12 0.24 3.963785 | 11.324716 | 3.143445 | 1.773405
22 0.8 0.144 -0.2 0.304 4.179723 | 9.820507 | 3.409242 | 3.008442
23 0.7 0.164 -0.07 0.213 5.046777 | 11.859988 | 4.567078 | 0.099253
24 0.6 0.171 -0.29 0.345 5.96672 | 9.605173 | 5.987225 [4.214716
25 0.5 0.2 -0.29 0.345 6.949257 | 9.605173 | 7.779309 | 4.214716
26 0.4 0.229 -0.0025 0.23 7.988528 | 10.413495 | 10.102174 | -0.741033
27 0 0.23 - - - - - -

All of the parameters listed in table 1, though specific to the Lapua Scenar GB528 rifle bullet,
are independent of air density and initial speed.

4 Wikipedia. External Ballistics. http://en.wikipedia.org/wiki/External_ballistics (accessed 3 June 2013).

12

7.2 Calculating Speed as a Function of Initial Speed and Distance Traveled

For the Lapua Scenar GB528 rifle bullet, Wikipedia’s External Ballistics page lists mass (m) as
19.44 g, diameter as 8.59 mm, and initial speed (Vinitiar) as 830 m/s.

Assuming standard sea-level atmospheric conditions (air density (o) equals 1.225 kg/m®and

speed of sound (vs) equals 340.3 m/s)® the speed of a bullet that has traveled 300 m (Ax) can be
calculated using the equations presented in sections 1 and 5.

First use equation 1 to find initial Mach number (Minitia):

_ Viiia _ 830m/s
nitial =y, 340.3m/s

sound

M = 2.43902 (51)

Next, use the equation for the area of a circle to find the cross-sectional area (A) of the projectile:

2
A= ar? :3.14159(Mj ~5.7953x10°° m® (52)
Use equation 2 to find the scaled distance traveled (As):
3 -5 2
As = PP 5, (L225kg/m®)(5.7953x10 ° m?) (300 m) = 54778 (53)

2m 2(.01944 kqg)

Use equation 45 to find the initial scaled distance (Sinitial):

Sinitial = L Inl a,_, + Bico +Cip = o In[— .06 + i} +5.2773=-.059991 (54)
Bioo 414 2.43902

initial
Use equation 43 to find the final scaled distance (s,):
S el = Simitiar + AS = —.059991 + 54778 = .487789 (55)

Use equation 46 to find the final Mach number (M .,):

Bia .392
M inal — = =2.09454 (56)
final eﬁkzl(sﬁna, —C1) o, e.392(.487789—5.555784) +.05

Finally, use equation 1 to find the final speed (v,):

Vi =M = 2.09454(340.3m/s) = 713 m/s (57)

final Vsound

5 National Aeronautics and Space Administration. U.S. Standard Atmosphere, 1976; NASA-TM-X-74335; U.S. Government
Printing Office: Washington, DC, October 1976.

13

7.3 Calculating Time of Flight as a Function of Initial Speed and Distance Traveled

Use equation 47 to find 7, andz ., :

1 —akom@ho+ ﬂk°J+dko

Tinitial —
e ﬁk:O M initial ﬂkZ:O initial
_ 1 (=09 |n(- 06+ ﬂj + (~.2416) (58)
(414)(2.439) 414 2.439
=—-.024768,
T final — L - ak;l In(akl + Pia J"‘ dyy
ﬂk:lM final ﬂk:l initial
S S) In(— 05+ ﬂj + (~.3539) (59)
(.392)(2.095) .392 2.095
=.217245.
Next, calculate the change in scaled time (Az):
AT =T g0 — Tinitia = -217245 — (—.024768) =.242013 (60)
Finally, use equation 3 to find time of flight (At)
_2mAT 2(.01944 kg)(.242013)

At

90s (61)

= =3
PAV, (1.225kg/m®)(5.795x10° m?)(340.3m/s)

8. C++ Implementation

8.1 Storing Drag-Table Coefficients: The DRAG Struct

DRAG structs are used to store the parameters associated with a single linear drag profile.
Multiple DRAG structs can be used to describe a nonlinear drag profile.

DRAG Code

struct DRAG{//<
double M;//
double a;//
double b;//
double s;//
double c;//
double T;//
double d;//

};//~~~YAGENAUT@GMAIL .COM LAST~UPDATED~O9DEC2013~~~~nn

=============A LINEAR DRAG PROFILE (CREATE A SET USING Drags())
Cmmmmmmm e THE MAXIMUM MACH VALUE FOR THE DRAG PROFILE
Cmmm m e e THE SLOPE OF THE DRAG PROFILE
Cmmmmm e THE Y-INTERCEPT OF THE DRAG PROFILE
Cmmmmmm e THE MINIMUM SCALED DISTANCE FOR THE DRAG PROFILE
Cmmmmm e THE SCALED-DISTANCE CONSTANT OF INTEGRATION
{mmmmmmm e THE MINIMUM SCALED TIME FOR THE DRAG PROFILE
Cmmmmmm e THE SCALED-TIME CONSTANT OF INTEGRATION

14

DRAG Parameters
M M specifies the maximum Mach value for the drag profile.
a a specifies the slope, «, of the drag profile (see equation 28).
b b specifies the y-intercept, £, of the drag profile (see equation 29).
S s specifies the minimum scaled distance, s, , for the drag profile (see equations 33-35).
c c specifies c, the integration constant from equation 31.
T T specifies the minimum scaled time, z, for the DRAG profile (see equations 39-41).
d d specifies d, the integration constant from equation 38.

8.2 Creating a Pointer to an Array of DRAG Structs: The Drags() Function

The Drags() function can be used to create a pointer to an array of DRAG structs. The code uses
equation 32 to determine M ; equation 28 to determine ¢, ; equation 29 to determine £, ;
equations 33-35 to determine s, ; equation 31 to determine c, ; equations 39-41to find 7, ;

and equation 38 to determine d, . If A, is found to be very close to zero, it is replaced with the

0,k ?

user-definable value b_min.

Note that the Drags() function uses the “new” command to allocate memory for the array of
DRAGS that is pointed to by the return value. Thus, to avoid memory leaks, each use of the
Drags() function should be accompanied by a use of the “delete[]” operator.

Drags() Code

inline DRAG*Drags(//<===================================CREATES A SET OF DRAGS
const double*M,//<-------------- MACH VALUESS (MUST BE UNIQUE & DECREASING)
const double*Cd,//<------ CORRESPONDING Cd VALUES (FROM F=-.5*rho*A*Cd*v~"2)
int N,/ /< m e e THE NUMBER OF MACH VALUES
double b _min=1E-8){//<-==---==--—mm oo MINIMUM BETA VALUE

DRAG*D=new DRAG[n-1];

for(int k=0,j=k-1;k<n-1;++k,++j){
D[k].M=M[k];
D[k].a=(Cd[k]-Cd[k+1])/(M[k]-M[k+1]);
D[k].b=Cd[k]-D[k].a*M[k];/*<-*/if(fabs(D[k].b)<b_min)D[k].b=b_min;
D[k].s=!k?0:1/D[j].b*log(D[j].a+D[j].b/M[k])+D[]j].c;
D[k].c=D[k].s-log(D[k].a+D[k].b/M[k])/D[k].b;
D[k].T=!k?0:(1/M[k]-D[j].a/D[j].b*1log(D[j].a+D[j].b/M[k]))/D[]j].b+D[j].d;
D[k].d=D[k].T-(1/M[k]-D[k].a/D[k].b*log(D[k].a+D[k].b/M[k]))/D[k].b;}

return D;//. v, note that D points to newly allocated memory

Y/ /~~~~YAGENAUT@GMAIL .COM A LAST~UPDATED~OQ9DEC2013~~~~n~n

15

Drags() Parameters

M

Cd

n

M points to an array of Mach values. The Mach values must be unique and listed in
decreasing order.

Cd points to an array of drag coefficients. There must be a drag coefficient for each
Mach value.

n specifies the number of elements contained in the array that is pointed to by M.

b_min b_min specifies the smallest value that g, is allowed to have (see the discussion that

follows equation 25).

Drags() Return Value

The Drags() function returns a pointer to an array of DRAG structs.

8.3

Calculating Scaled Distance as a Function of Mach Number: The SofM() Function

The SofM() function uses equation 45 to calculate scaled distance as a function of Mach number.

SofM() Code

inline double SofM(//<============SCALED DISTANCE AS A FUNCTION OF MACH NUMBER

const DRAG*D,//<-----=----------------- DRAG PROFILES (CREATE USING Drags())

int n,//<---------- NUMBER OF MACH VALUES USED TO CREATE D (NOT SIZE OF D!)

double M){/ /<= --=m o MACH NUMBER (M=v/c)
int k;/*<-*/for(k=n-2;k>088M>D[k].M;--k);

return 1/D[k].b*log(D[k].a+D[k].b/M)+D[k].C5// e uueeenn.. s=rho*A/(2*m)*x

Y/ /~~~~YAGENAUT@GMAIL .COM A LAST~UPDATED~OQ9DEC2013~~~~n~n

SofM() Parameters

D

M

D points to an array of DRAG structs. The CreateDrags() function can be used to
create a pointer to an array of DRAG structs.

n specifies the number of Mach elements used to create D. Note that n is one less
than the size of D.

M specifies a Mach number. Use equation 1 to convert from speed to Mach number.

SofM() Return Value

The SofM() function returns a scaled distance. Use equation 2 to convert from scaled distance to
measured distance.

8.4

Calculating Mach Number as a Function of Scaled Distance: The MofS() Function

The MofS() function uses equation 46 to calculate Mach number as a function of scaled distance.

16

MofS() Code

inline double MofS(//<============MACH NUMBER AS A FUNCTION OF SCALED DISTANCE
const DRAG*D,//<--=-=-------ccmmmmmmmamm DRAG PROFILES (CREATE USING Drags())
int n,//<---------- NUMBER OF MACH VALUES USED TO CREATE D (NOT SIZE OF D!)
double s){//<----------““-““--mmmmmmm—- -~ SCALED-DISTANCE (s=rho*A/(2*m)*x)

int k;/*<-*/for(k=n-2;k>088&s<D[k].s;--k);
return D[k].b/(exp(D[k].b*(s-D[k].c))-D[k].a);// e eeeeeeeeeennn M=v/c
}/ / ~~~nYAGENAUT@GMAIL . COM~nmmmmmn LAST~UPDATED~@9DEC2013~~~~nn

MofS() Parameters

D D points to an array of DRAG structs. The CreateDrags() function can be used to
create a pointer to an array of DRAG structs.

n n specifies the number of Mach elements used to create D. Note that n is one less
than the size of D.

S s specifies a scaled-distance. Use equation 2 to convert from measured distance to
scaled distance.

MofS() Return Value

The MofS() function returns a Mach number. Use equation 1 to convert from Mach number to
speed.

8.5 Calculating Scaled Time: The TofM() Function

The TofM() function uses equation 47 to calculate scaled time as a function of Mach number.

TofM() Code

inline double TofM(//<================SCALED TIME AS A FUNCTION OF MACH NUMBER
const DRAG*D,//<-----=----------------- DRAG PROFILES (CREATE USING Drags())

int n,//<---------- NUMBER OF MACH VALUES USED TO CREATE D (NOT SIZE OF D!)

double M){//<-----=----“""" e MACH NUMBER (M=v/c)

int k;/*<-*/for(k=n-2;k>088M>D[k].M;--k);// T=rho*A/(2*m)*c*t ----.
return(1/M-D[k].a/D[k].b*log(D[k].a+D[k].b/M))/D[k].b+D[k].d;//<----------- '

}/ /~~nnYAGENAUT@GMAIL . COMnnnnmnnmmmmmnmmmmmnmmnnnns LAST~UPDATED~B9DEC2013~~~nmn

TofM() Parameters

D D points to an array of DRAG structs. The CreateDrags() function can be used to
create a pointer to an array of DRAG structs.

n n specifies the number of Mach elements used to create D. Note that n is one less
than the size of D.

M M specifies a Mach number. Use equation 1 to convert from speed to Mach number.

17

TofM() Return Value

The TofM() function returns a scaled time. Use equation 3 to convert from scaled time to
measured time.

8.6 Example: Calculating Speed and Time of Flight for the Lapua Scenar GB528 Rifle
Bullet

The following example uses information from Wikipedia’s External Ballistics page” to calculate
speed and time of flight as functions of total distance traveled for a Lapua Scenar GB528 rifle
bullet. Calculated values are compared to Doppler radar measurements, which were also
obtained from Wikipedia’s External Ballistics page.

#include <CStdiod/ /.t printf()
#tinclude "y traj 1d.h"//. ..t e yTrajilD,<cmath>{fabs()}
int main(){
double M[]={2.4,2.2,2,1.8,1.6,1.5,1.4,1.3,1.2,1.15,1.1,1.075,1.050,1.025,1,
.975, .950,.925,.9,.875,.85,.825,.8,.7,.6,.5,.4,0};
double C[]={.2790,.282,.292,.304,.321,.328,.336,.343,.348,.348,.347,.345,.341,
.334,.306,.236,.177,.154,.142, .137, .137, .141, .144, . 164, .171, .2, .229, . 23};
yTrajlD: :DRAG*D=yTrajiD: :Drags(M,C,28);
double A=3.14159*pow(8.59/2000,2);//..cross-sectional area of projectile (m”2)

double m=19.44/1000;//. ... ciiiiiiiiiiiiiiiiiinnnnnnnnns mass of projectile (kg)
double vO=830;//... ...ttt initial speed of projectile (m/s)
double rho=1.225;//...cciiiiniiiiiiiinnnnn. density of air at sea level (kg/m”3)
double €=340.3;// .. ittt i e local speed of sound (m/s)

double v_r[]={830,711,604,507,422,349,311,288,267,247,227};
double t_r[]={0,.3918,.8507,1.3937,2.0435,2.8276,3.748,4.7522,5.8254,7.0095,

8.2909};
printf("%13s | calc. ref. | calc. ref. \n","");
printf("%13s range | speed speed %% | time time %%\N", ")
printf("%13s (m) | (m/s) , (m/s) , diff. | (s) , (s) , diff.\n","");
printf("%13S==============::::::::::::::==========================\nn,nn);

for(int i=0;i<11;++i){
double v=yTrajiD::MofS(D,28,yTrajlD: :SofM(D,28,v0/c)+300*i*rho*A/(2*m))*c;
double t=(yTrajiD::TofM(D,28,v/c)-yTrajlD::TofM(D,28,v0/c))*2*m/(rho*A*c);
printf("%19.1f |%6.1f ,%6.1f ,%5.1f |%7.4f ,%7.4f ,%5.1f\n",
300.*i,v,v_r[i],fabs(v_r[i]-v)/((v_r[i]+v)/2)*100,t,t_r[i],
i==0?0:fabs(t_r[i]-t)/((t_r[i]+t)/2)*100);}
delete[] D;

18

OUTPUT:

| calc ref. | calc ref

range | speed speed % | time time %
(m) | (m/s) , (m/s) , diff. | (s) , (s) , diff
0.0 | 830.0 , 830.0, 0.0 | 0.0000 , 0.0000 , 0.0
300.0 | 712.7 , 711.0, 0.2 | ©.39%01 , 0.3918 , 0.4
600.0 | 606.3 , 604.0 , ©.4 | ©.8467 , 0.8507 , 0.5
900.0 | 509.3 , 507.0 , ©.5 | 1.3867 , 1.3937 , 0.5
1200.0 | 423.3 , 422.0, ©.3 | 2.0333, 2.0435, 0.5
1500.0 | 350.2 , 349.0 , ©.3 | 2.8140 , 2.8276 , 0.5
1800.0 | 311.1 , 311.0 , ©.0 | 3.7319 , 3.7480 , 0.4
2100.0 | 288.3 , 288.0 , ©.1 | 4.7344 , 4.7522 , 0.4
2400.0 | 267.7 , 267.0 , ©.3 | 5.8183 , 5.8254 , 0.1
2700.0 | 245.2 , 247.0 , 0.7 | 6.9894 , 7.0095 , 0.3
3000.0 | 223.3 , 227.0, 1.7 | 8.2681 , 8.2909 , 0.3

8.7 Example: Calculating Scaled Time of Impact for Fragment Trajectories

The following example simulates the trajectories of fragments produced by a fragmentation
weapon.

The code generates 1,000,000 fragments, all with the same starting location. Each fragment is
given a randomly chosen velocity. Direction is uniformly distributed across all possible
directions. Speed is uniformly distributed with values from Mach 1.0 to Mach 3.0.

A rectangular surface that is 80.0 x 40.0 scaled length units is placed with its center 10.0 scaled
length units away from the fragment source. The surface is oriented such that, at its center, it is
perpendicular to a ray originating from the fragment source.

Distance to point of impact is calculated using functions from the y3DOps namespace.® The
MofS() function is used to find each fragment’s speed at the impact location. The TofM()
function is used to find the scaled time of impact.

#include <cstdio>//..cviiiiiiiiiiiiiiann. fclose(),FILE,freopen(),printf(),stdout
#include <cstdlib>// .ttt i i i i e rand(),RAND_MAX
#include "y _3d _0OpPS. N/ /i e ettt i e et e y3DO0ps
#tinclude "y traj 1d.h"//.... ... yTrajiD,<cmath>{cos(),sin(),sqrt()}
int main(){
FILE*f=freopen("impacts.txt","w",stdout);//.......... redirect output to a file
double M[]={3,2.2,1.5,1,.5,.2},C[1={.45,.5,.6,.9,.5,.2};// cuuuuueeeern.. cd(Mm)
yTrajlD: :DRAG*D=yTrajlD: :Drags(M,C,6);
double T[]={10,40,20 , 10,-40,20 , 10,40,-20};//...ccccvc... rectangular target
for(int i=0;1<1000000;++i){
double MO=2*rand()/RAND_MAX+1;// e eeeeeeeesessonns initial speed
double phi=2*3,14159265358979*rand()/RAND_MAX;//...... random azimuthal angle
double theta=acos(2.*rand()/RAND_MAX-1);//..cceeuuu.. random inclination angle

6Yager, R. J. Three-Dimensional Translations, Rotations, and Intersections Using C++; ARL-TN-557; U.S. Army Research
Laboratory: Aberdeen Proving Ground, MD, 2013.

19

double S[]={0,0,0,sin(theta)*cos(phi),sin(theta)*sin(phi), cos(theta)};
double t[3];/*<-*/y3DOps::IParameters(t,T,S);//...... intersection parameters
double x[3];/*<-*/y3DOps::Intersect(x,t,S);//.ccceeo... point of intersection
double M=yTrajiD::MofS(D,6,yTrajlD::SofM(D,6,M0)
+sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]));
double T=yTrajiD::TofM(D,6,M)-yTrajiD::TofM(D,6,M0);//.scaled time of impact
if(0<t[0]88&O<t[1]8&&t[1]<1880<t[2]&&t[2]<1)
printf("%8.3f,%8.3f,%8.3f,%8.3f,%8.3f\n",x[0],x[1],x[2],M,T);}
fclose(f);
delete[] D;
}/ [~~~ YAGENAUT@GMAIL . COM LAST~UPDATED~OQ9DEC2013~~~~n~n

The results are shown in figure 9. Since all time and length units are scaled, the image presented
in figure 9 is independent of fragment mass, fragment cross-sectional area, and air density. Note
the color mixing that results from selecting random initial speeds.

7=0 7>200

Figure 9. Scaled time of impact, ¢, for fragments striking a plate.

9. Code Summary

A summary sheet is provided at the end of this report. It presents the yTraj1D namespace, which
contains the struct and four functions that are described in sections 8.1-8.5. Also presented are
the examples found in sections 8.6 and 8.7.

20

yTrajlD Summary

y_traj_1id.h Equations
#ifndef Y_TRAJ_1D_GUARD// See Yager, R.; Flanders, B. "A One-Dimensional, Nonit- _
#define Y_TRAJ_1D_GUARD// erative Trajectory Model (with a C++ Implementation)" € Co oM+ fy forksochthat ;. < M < 34;
#INCIUde <CMAtN>/ 7« ottt et et et e e e exp(), fabs(),log() Cpi—Cpza
namespace yTrajlD{//@E000000000A0AAAAAAAAA@ A 1D, NON-ITERATIVE TRAJECTORY MODEL whael M,—M,,
struct DRAG{//< A LINEAR DRAG PROFILE (CREATE A SET USING Drags())
double M;//<- THE MAXIMUM MACH VALUE FOR THE DRAG PROFILE Bi=Cpy— 04 My

double
double
double s;//<-
double c;//<-
double T;//<-
double

THE SLOPE OF THE DRAG PROFILE
THE Y-INTERCEPT OF THE DRAG PROFILE
THE MINIMUM SCALED DISTANCE FOR THE DRAG PROFILE
----THE SCALED-DISTANCE CONSTANT OF INTEGRATION
-THE MINIMUM SCALED TIME FOR THE DRAG PROFILE
THE SCALED-TIME CONSTANT OF INTEGRATION
LAST~UPDATED~@9DEC201

}3//~~~YAGENAUT@GMATL . COM
inline DRAG*Drags(//<
const double*M,//<---
const double*cd,//<

REATES A SET OF DRAGS
MACH VALUESS (MUST BE UNIQUE & DECREASING)
-CORRESPONDING Cd VALUES (FROM F=-.5*rho*A*Cd*v~2)
THE NUMBER OF MACH VALUES
double b_min=1E-8){//<-============--mmmmmmm oo MINIMUM BETA VALUE
DRAG*D=new DRAG[n-1];
for(int k=0,j=k-1;k<n-1;++k,++3){
D[k].M=M[k];

D[k].a=(Cd[k]-Cd[k+1])/(M[Kk]-M[k+1]);
D[k].b=Cd[k]-D[k].a*M[k];/*<-*/if(Fabs(D[k].b)<b_min)D[k].b=b_min;
D[k].s=!k?@:1/D[j].b*1og(D[§].a+D[j].b/M[k])+D[3].c;
D[k].c=D[k].s-log(D[k].a+D[k].b/M[k])/D[K].b;

D[k].T=1k?@: (1/M[k]-D[j].a/D[j].b*log(D[j].a+D[3].b/M[k]))/D[§].b+D[j].d;
D[k].d=D[k].T-(1/M[k]-D[k].a/D[k].b*log(D[k].a+D[k].b/M[k]))/D[k].b;}
return D3//. oot note that D points to newly allocated memory
}/ /~~~~YAGENAUT@GMATIL . COM: LAST~UPDATED~@9DEC2013~~nnnn
inline double SofM(//<= =SCALED DISTANCE AS A FUNCTION OF MACH NUMBER
const DRAG*D, //<===========m=mmmmmmnn DRAG PROFILES (CREATE USING Drags())
int n,//<------ NUMBER OF MACH VALUES USED TO CREATE D (NOT SIZE OF D!)
double M){//<-- MACH NUMBER (M=v/c)
int k;/*<-*/for(k=n-2;k>08M>D[k].M;--k);
return 1/D[k].b*log(D[k].a+D[k].b/M)+D[k].c5// uvveennnennn s=rho*A/(2*m)*x
}/ /~~~~YAGENAUT@GMATIL . COM: LAST~UPDATED~@9DEC2013~~nnnn
inline double MofS(//< JACH NUMBER AS A FUNCTION OF SCALED DISTANCE
const DRAG*D, //< DRAG PROFILES (CREATE USING Drags())
int n,//<---------- NUMBER OF MACH VALUES USED TO CREATE D (NOT SIZE OF D!)
double s){//<-----------ccmmmemeeaoo SCALED-DISTANCE (s=rho*A/(2*m)*x)
int k;/*<-*/for(k=n-2;k>08&s<D[k].s;
return D[k].b/(exp(D[k].b*(s-D[k].c))- D[k] a);//.
} ~~YAGENAUT@GMAIL . COM:
inline double TofM(//<
const DRAG*D, //<--
int n,//<------

M=v/c

L AST~UPDATED~99DEC2913

SCALED TIME AS A FUNCTION OF MACH NUMBER

----DRAG PROFILES (CREATE USING Drags())

-NUMBER OF MACH VALUES USED TO CREATE D (NOT SIZE OF D!)

double M){//< MACH NUMBER (M=v/c)

int k;/*<-*/for(k=n-2;k>08&M>D[k].M;--k);// T=rho*A/(2*m)*c*t -

return(1/M-D[k].a/D[k].b*log(D[k].a+D[k].b/M))/D[k].b+D[k].d;//<-

}/ /~~~~YAGENAUT@GMATIL . COM: LAST~UPDATED~@9DEC2013

Y/ g@%@@@@@W@@@@W@@WW@@@@@@@@@@@@@@@W@@@@W@@@@W@@@@W@@@@@@@@@@W@@@@@@@@
#endi

"Impacts" Example

#include <cstdio>//

#include <cstdlib>/ .

#include "y_3d_ops.h"//..

#include "y_traj_1d.h"//.

int main(){
FILE*f=freopen("impacts.txt","w",stdout);//.......... redirect output to a file
double M[1={3,2.2,1.5,1,.5,.2},C[1={.45,.5,.6,.9,.5,.2}5// eeevreereeer.. cd(M)
yTrajlD: :DRAG*D=yTraj1D: :Drags(M,C,6);

f(lose() FILE,freopen(),printf(),stdout
..rand(),RAND_MAX

double T[]={10,40,20 , 10,-40,20 , 10,40,-20};//............ rectangular target
for(int i=0;1i<1000000;++1){
double MO=2*rand()/RAND_MAX+1;// . uuuuuuuniniiiiiiininnnnnn initial speed
double phi=2%3.14159265358979*rand()/RAND_MAX;//......random azimuthal angle
double theta=acos(2.*rand()/RAND_MAX-1);//.......... random inclination angle
double S[]={0,0,0,sin(theta)*cos(phi),sin(theta)*sin(phi),cos(theta)};

double t[3];/*<-*/y3DOps::IParameters(t,T,S);//...... intersection parameters
double x[3];/*<-*/y3DOps: :Intersect(x,t,S);//.......... point of intersection
double M=yTrajiD::MofS(D,6,yTrajlD::SofM(D,6,M0)
+sqrt(x[01*x[0]+x[1]*x[1]+x[2]*x[2]));
double T=yTrajiD::TofM(D,6,M)-yTrajlD::TofM(D,6,M0);//.scaled time of impact
if(0<t[0]8&0<t[1]8&t[1]<1880<t[2]8&&t[2]<1)
printf("%8.3f,%8.3f,%8.3F,%8.3F,%8.3F\n",x[0],x[1],x[2],M,T);}
fclose(f);
delete[] D;
Y/~ ~~YAGENAUT@GMATIL . COM:

LAST~UPDATED~@9DEC2013

Graph of Output from "Impacts" Example

for ksach that 5, <5< 5,

cﬂ.l‘ cﬂ.hl IBl

o=
My
whereqc, =5, — Il{n" + }

e

3~ oMy,

#include <cstdio>//
#include "y_traj_1d.h"//..
int main(){
double M[]={2.4,2.2,2,1.8,1.6,1.5,1.4,1.3,1.2,1.15,1.1,1.075,1.050,1.025,1,
.975,.950,.925, .9, .875, .85, .825,.8,.7,.6,.5,.4,0};
double C[]={.270,.282,.292,.304,.321,.328,.336,.343,
.334,.306,.236,.177,.154,.142,.137,.137, .141, . 144,
yTrajlD: :DRAG*D=yTrajlD: :Drags(M,C,28);
double .14159*pow(8.59/2000,2);//..cross-sectional area of projectile (m"2)
double m=19.44/1000;//. . mass of projectile (kg)
double v@=830;//.... initial speed of projectile (m/s)
double rho=1.225;//. .density of air at sea level (kg/m"3)
double c=340.3;// local speed of sound (m/s)
double v_r[]={830,711,604,507,422,349,311,288,267,247,227};
double t_r[]={@,.3918,.8507,1.3937,2.0435,2.8276,3.748,4.7522,5.8254,7.0095,
8.2909};

printf()
..yTrajib,<cmath>{fabs()}

.348,.348,.347,.345, .341,
.164,.171,.2,.229,.23};

printf("%13s | calc. ref. | calc. ref.
printf("%13s range | speed speed %% | time time
printf("%13s (m) | (m/s) , (m/s) , diff. | (s) , (s) ,

printf("%1.
for(int i=0;i<11;++i){
double v=yTrajiD::MofS(D,28,yTrajlD: :SofM(D,28,v0/c)+300*i*rho*A/(2*m))*c;
double t=(yTrajiD::TofM(D,28,v/c)-yTrajlD::TofM(D,28,v0/c))*2*m/(rho*A*c);
printf("%19.1f |%6.1f ,%6.1f ,%5.1f |%7.4f ,%7.4f ,%5.1f\n",
300.*i,v,v_r[i],fabs(v_r[i]-v)/((v_r[i]+v)/2)*100,t,t_r[i],
i==@?0:fabs(t_r[i]-t)/((t_r[i]+t)/2)*100);}
delete[] D;

}/ [~rnemnYAGENAUT@GMATL . COM: LAST~UPDATED~@IDEC2013~nnn

Output from "Validating" Example

| calc. ref. | calc. ref.
range | speed speed % | time time %
(m) | (m/s) , (m/s) , diff. | (s) , (s) , diff.
0.0 | 830.0 , 830.0 , 0.0 | 0.0000 , 0.0000 , 0.0
300.0 | 712.8 , 711.6 , ©.2 | 0.3901 , 0.3918 , 0.4
600.0 | 606.1 , 604.0 , ©.3 | 0.8466 , 0.8507 , 0.5
900.0 | 509.3 , 507.0 , ©.5 | 1.3867 , 1.3937 , ©.5
1200.0 | 423.2 , 422.0 , 0.3 | 2.0333 , 2.0435 , 0.5
1500.0 | 350.2 , 349.0 , 0.3 | 2.8140 , 2.8276 , 0.5
1800.0 | 311.2 , 311.0 , 0.0 | 3.7319 , 3.7480 , 0.4
2100.0 | 288.2 , 288.0 , 0.1 | 4.7344 , 4.7522 , 0.4
2400.0 | 266.6 , 267.0 , ©.1 | 5.8163 , 5.8254 , 0.2
2700.0 | 245.1 , 247.0 , ©.8 | 6.9894 , 7.0095 , 0.3
3000.0 | 224.0 , 227.0 , 1.3 | 8.2697 , 8.2909 , 0.3

21

NO. OF

COPIES ORGANIZATION

1
(PDF)

2
(PDF)

1

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

DIRECTOR

US ARMY RESEARCH LAB

RDRL CIO LL

IMAL HRA MAIL & RECORDS MGMT

GOVT PRINTG OFC

(PDF) A MALHOTRA

1
(PDF)

DIR USARL
RDRL WML A
R YAGER

22

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	1. Introduction
	2. Scaled Variables
	3. Derivation of Equations for Linear Drag Coefficients
	3.1 Drag Coefficient as a Function of Mach Number
	3.2 Scaled Distance as a Function of Mach Number
	3.3 Mach Number as a Function of Scaled Distance
	3.4 Scaled Time as a Function of Mach Number

	4. Generalization to an Arbitrary Drag-Mach Relationship
	4.1 Drag Coefficient as a Piecewise, Linear Function of Mach Number
	4.2 Scaled Distance as a Function of Mach Number
	4.3 Mach Number as a Function of Scaled Distance
	4.4 Scaled Time as a Function of Mach Number

	5. State Variables and Functional Notation
	5.1 State Variables
	5.2 Functional Notation

	6. Solving for Unknowns
	7. Example: The Lapua Scenar GB528 Rifle Bullet
	7.1 Creating a Table of Unitless Constants
	7.2 Calculating Speed as a Function of Initial Speed and Distance Traveled
	7.3 Calculating Time of Flight as a Function of Initial Speed and Distance Traveled

	8. C++ Implementation
	8.1 Storing Drag-Table Coefficients: The DRAG Struct
	8.2 Creating a Pointer to an Array of DRAG Structs: The Drags() Function
	8.3 Calculating Scaled Distance as a Function of Mach Number: The SofM() Function
	8.4 Calculating Mach Number as a Function of Scaled Distance: The MofS() Function
	8.5 Calculating Scaled Time: The TofM() Function
	8.6 Example: Calculating Speed and Time of Flight for the Lapua Scenar GB528 Rifle Bullet
	8.7 Example: Calculating Scaled Time of Impact for Fragment Trajectories

	9. Code Summary

